From: Francois Fleuret Date: Thu, 12 Jan 2017 14:26:41 +0000 (+0100) Subject: Wow, seems to work (!) X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=34ed0d49d9b6b03811cd92c9513edf4ec5d4d2d2;p=dagnn.git Wow, seems to work (!) --- diff --git a/dagnn.lua b/dagnn.lua index 0b8f7d4..05672e9 100755 --- a/dagnn.lua +++ b/dagnn.lua @@ -10,21 +10,21 @@ function DAG:__init() self.node = { } end -function DAG:createNode(n) - if not self.node[n] then - self:add(n) -- Add it to the object as a Container - self.node[n] = {} - self.node[n].succ = {} - self.node[n].pred = {} +function DAG:createNode(nnm) + if not self.node[nnm] then + self:add(nnm) -- Add it to the object as a Container + self.node[nnm] = {} + self.node[nnm].succ = {} + self.node[nnm].pred = {} end end -function DAG:addEdge(a, b) +function DAG:addEdge(nnma, nnmb) self.sorted = nil - self:createNode(a) - self:createNode(b) - table.insert(self.node[b].pred, a) - table.insert(self.node[a].succ, b) + self:createNode(nnma) + self:createNode(nnmb) + table.insert(self.node[nnmb].pred, nnma) + table.insert(self.node[nnma].succ, nnmb) end -- Apply f on t recursively; use the corresponding a1 and a2 elements @@ -47,11 +47,11 @@ function DAG:setInput(i) self.sorted = nil self.inputModules = i self:nestApply( - function(m) - if #self.node[m].succ == 0 then + function(nnm) + if #self.node[nnm].succ == 0 then error('Input modules must have outgoing edges.') end - if #self.node[m].pred > 0 then + if #self.node[nnm].pred > 0 then error('Input modules cannog have incoming edges.') end end, @@ -63,11 +63,11 @@ function DAG:setOutput(o) self.sorted = nil self.outputModules = o self:nestApply( - function(m) - if #self.node[m].pred == 0 then + function(nnm) + if #self.node[nnm].pred == 0 then error('Output module must have incoming edges.') end - if #self.node[m].succ > 0 then + if #self.node[nnm].succ > 0 then error('Output module cannot have outgoing edges.') end end, @@ -90,10 +90,10 @@ function DAG:putInOrder() repeat nc = 0 - for i, node in pairs(self.node) do - for _, j in pairs(node.succ) do - if distance[i] and (not distance[j] or distance[j] < distance[i] + 1) then - distance[j] = distance[i] + 1 + for nnma, node in pairs(self.node) do + for _, nnmb in pairs(node.succ) do + if distance[nnma] and (not distance[nnmb] or distance[nnmb] < distance[nnma] + 1) then + distance[nnmb] = distance[nnma] + 1 nc = nc + 1 end end @@ -101,13 +101,13 @@ function DAG:putInOrder() until nc == 0 self.sorted = { } - for n, d in pairs(distance) do - table.insert(self.sorted, { distance = d, node = n }) + for m, d in pairs(distance) do + table.insert(self.sorted, { distance = d, nnm = m }) end table.sort(self.sorted, function(a, b) return a.distance < b.distance end) - for i, a in ipairs(self.sorted) do self.sorted[i] = a.node end + for i, a in ipairs(self.sorted) do self.sorted[i] = a.nnm end end function DAG:print() @@ -121,21 +121,29 @@ end function DAG:updateOutput(input) self:putInOrder() - self:nestApply(function(m, i) m:updateOutput(i) end, self.inputModules, input) + self:nestApply( + function(nnm, i) + self.node[nnm].input = i + nnm:updateOutput(i) + end, + self.inputModules, + input + ) - for _, m in ipairs(self.sorted) do - if #self.node[m].pred > 0 then + for _, nnm in ipairs(self.sorted) do + local node = self.node[nnm] + if #node.pred > 0 then local i - if #self.node[m].pred == 1 then - i = self.node[m].pred[1].output - elseif #self.node[m].pred > 1 then + if #node.pred == 1 then + i = node.pred[1].output + elseif #node.pred > 1 then i = {} - for k = 1, #self.node[m].pred do - i[k] = self.node[m].pred[k].output + for k = 1, #node.pred do + i[k] = node.pred[k].output end end - self.node[m].input = i - m:updateOutput(i) + node.input = i + nnm:updateOutput(i) end end @@ -148,7 +156,7 @@ function DAG:updateGradInput(input, gradOutput) self:putInOrder() self:nestApply( - function(m, go) m:updateGradInput(self.node[m].input, go) end, + function(nnm, go) nnm:updateGradInput(self.node[nnm].input, go) end, self.outputModules, gradOutput ) @@ -157,31 +165,36 @@ function DAG:updateGradInput(input, gradOutput) end for k = #self.sorted, 1, -1 do - local m = self.sorted[k] - local node = self.node[m] + local nnm = self.sorted[k] + local node = self.node[nnm] local pred, succ, gradInputSucc = node.pred, node.succ, node.gradInputSucc - -- We update m:gradInput - if #gradInputSucc == 1 then - m:updateGradInput(node.input, gradInputSucc[1]) - elseif #gradInputSucc > 1 then - local sum - for k = 1, #succ do - if sum then - sum:add(succ[k].gradInput) - else - sum = succ[k].gradInput + if #gradInputSucc > 0 then + -- We update nnm:gradInput + local gi + if #gradInputSucc == 1 then + gi = gradInputSucc[1] -- we avoid a clone() + elseif #gradInputSucc > 1 then + for k = 1, #gradInputSucc do + if gi then + gi:add(gradInputSucc[k]) + else + gi = gradInputSucc[k]:clone() + end end end - m:updateGradInput(node.input, sum) + nnm:updateGradInput(node.input, gi) end -- We fill the gradInputSucc of our predecessors if #pred == 1 then - table.insert(self.node[pred[1]].gradInputSucc, node.gradInput) + table.insert(self.node[pred[1]].gradInputSucc, nnm.gradInput) elseif #pred > 1 then + if not torch.type(nnm.gradInput) == 'table' then + error('Should have a table gradInput since it has multiple predecessors') + end for n = 1, #pred do - table.insert(self.node[node.pred[n]].gradInputSucc, m.gradInput[n]) + table.insert(self.node[node.pred[n]].gradInputSucc, nnm.gradInput[n]) end end end diff --git a/test-dagnn.lua b/test-dagnn.lua index 0c9fe6d..32eed57 100755 --- a/test-dagnn.lua +++ b/test-dagnn.lua @@ -42,14 +42,14 @@ g:addEdge(b, c) g:addEdge(b, d) g:addEdge(d, f) -g:setInput({ a }) +g:setInput({{a}}) g:setOutput({ e, f }) g:print() input = torch.Tensor(3, 10):uniform() -output = g:updateOutput({ input }) +output = g:updateOutput({{ input }}) printTensorTable(output)