From: François Fleuret Date: Tue, 26 Mar 2024 07:11:38 +0000 (+0100) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=290c261e54a98cdea6115e2a0ee91ce92257d13b;p=picoclvr.git Update. --- diff --git a/escape.py b/escape.py index a3d8c85..7596bea 100755 --- a/escape.py +++ b/escape.py @@ -14,7 +14,7 @@ from torch.nn import functional as F nb_states_codes = 5 nb_actions_codes = 5 nb_rewards_codes = 3 -nb_lookahead_rewards_codes = 3 +nb_lookahead_rewards_codes = 4 # stands for -1, 0, +1, and UNKNOWN first_states_code = 0 first_actions_code = first_states_code + nb_states_codes @@ -50,6 +50,7 @@ def code2reward(r): def lookahead_reward2code(r): + # -1, 0, +1 or 2 for UNKNOWN return r + 1 + first_lookahead_rewards_code @@ -60,7 +61,7 @@ def code2lookahead_reward(r): ###################################################################### -def generate_episodes(nb, height=6, width=6, T=10, nb_walls=3, nb_coins=3): +def generate_episodes(nb, height=6, width=6, T=10, nb_walls=3, nb_coins=2): rnd = torch.rand(nb, height, width) rnd[:, 0, :] = 0 rnd[:, -1, :] = 0 @@ -195,7 +196,7 @@ def seq2str(seq): t >= first_lookahead_rewards_code and t < first_lookahead_rewards_code + nb_lookahead_rewards_codes ): - return "n.p"[t - first_lookahead_rewards_code] + return "n.pU"[t - first_lookahead_rewards_code] else: return "?" diff --git a/tasks.py b/tasks.py index 11879fd..57a4c39 100755 --- a/tasks.py +++ b/tasks.py @@ -1898,6 +1898,13 @@ class Escape(Task): self.train_input = seq[:nb_train_samples].to(self.device) self.test_input = seq[nb_train_samples:].to(self.device) + self.state_len = self.height * self.width + self.index_lookahead_reward = 0 + self.index_states = 1 + self.index_action = self.state_len + 1 + self.index_reward = self.state_len + 2 + self.it_len = self.state_len + 3 # lookahead_reward / state / action / reward + def batches(self, split="train", nb_to_use=-1, desc=None): assert split in {"train", "test"} input = self.train_input if split == "train" else self.test_input @@ -1908,6 +1915,13 @@ class Escape(Task): for batch in tqdm.tqdm( input.split(self.batch_size), dynamic_ncols=True, desc=desc ): + t = torch.arange(input.size(1), device=input.device)[None, :] + u = torch.randint(input.size(1), (input.size(0), 1), device=input.device) + lr_mask = (t <= u).long() * ( + t % self.it_len == self.index_lookahead_reward + ).long() + + input = lr_mask * escape.lookahead_reward2code(2) + (1 - lr_mask) * input yield batch def vocabulary_size(self): @@ -1919,14 +1933,7 @@ class Escape(Task): result = self.test_input[:250].clone() t = torch.arange(result.size(1), device=result.device)[None, :] - state_len = self.height * self.width - index_lookahead_reward = 0 - index_states = 1 - index_action = state_len + 1 - index_reward = state_len + 2 - it_len = state_len + 3 # lookahead_reward / state / action / reward - - result[:, it_len:] = -1 + result[:, self.it_len :] = -1 snapshots = [] @@ -1953,30 +1960,31 @@ class Escape(Task): optimistic_bias[escape.lookahead_reward2code(1)] = math.log(1e1) for u in tqdm.tqdm( - range(it_len, result.size(1) - it_len + 1, it_len), desc="thinking" + range(self.it_len, result.size(1) - self.it_len + 1, self.it_len), + desc="thinking", ): - lr, _, _, _ = escape.seq2episodes(result[:, :u], self.height, self.width) - # Generate the lookahead_reward and state - ar_mask = (t % it_len == index_lookahead_reward).long() * ( - t <= u + index_lookahead_reward + ar_mask = (t % self.it_len == self.index_lookahead_reward).long() * ( + t <= u + self.index_lookahead_reward ).long() ar(result, ar_mask) # Generate the lookahead_reward and state - ar_mask = (t >= u + index_states).long() * ( - t < u + index_states + state_len + ar_mask = (t >= u + self.index_states).long() * ( + t < u + self.index_states + self.state_len ).long() ar(result, ar_mask) # Re-generate the lookahead_reward - ar_mask = (t % it_len == index_lookahead_reward).long() * ( - t <= u + index_lookahead_reward + ar_mask = (t % self.it_len == self.index_lookahead_reward).long() * ( + t <= u + self.index_lookahead_reward ).long() ar(result, ar_mask, logit_biases=optimistic_bias) # Generate the action and reward - ar_mask = (t >= u + index_action).long() * (t <= u + index_reward).long() + ar_mask = (t >= u + self.index_action).long() * ( + t <= u + self.index_reward + ).long() ar(result, ar_mask) filename = os.path.join(result_dir, f"test_thinking_compute_{n_epoch:04d}.txt")