--- /dev/null
+#!/usr/bin/env python
+
+# Any copyright is dedicated to the Public Domain.
+# https://creativecommons.org/publicdomain/zero/1.0/
+
+# Written by Francois Fleuret <francois@fleuret.org>
+
+import math
+import torch, torchvision
+import torch.nn.functional as F
+
+name_shapes = ["A", "B", "C", "D", "E", "F"]
+
+name_colors = ["red", "yellow", "blue", "green", "white", "purple"]
+
+######################################################################
+
+
+class GridFactory:
+ def __init__(
+ self,
+ height=4,
+ width=4,
+ max_nb_items=4,
+ max_nb_transformations=4,
+ nb_questions=4,
+ ):
+ self.height = height
+ self.width = width
+ self.max_nb_items = max_nb_items
+ self.nb_questions = nb_questions
+
+ def generate_scene(self):
+ nb_items = torch.randint(self.max_nb_items - 1, (1,)).item() + 2
+ col = torch.full((self.height * self.width,), -1)
+ shp = torch.full((self.height * self.width,), -1)
+ a = torch.randperm(len(name_colors) * len(name_shapes))[:nb_items]
+ col[:nb_items] = a % len(name_colors)
+ shp[:nb_items] = a // len(name_colors)
+ i = torch.randperm(self.height * self.width)
+ col = col[i]
+ shp = shp[i]
+ return col.reshape(self.height, self.width), shp.reshape(
+ self.height, self.width
+ )
+
+ def random_transformations(self):
+ nb_transformations = torch.randint(self.max_nb_transformations + 1, (1,)).item()
+
+ def print_scene(self, scene):
+ col, shp = scene
+
+ # for i in range(self.height):
+ # for j in range(self.width):
+ # if col[i,j] >= 0:
+ # print(f"at ({i},{j}) {name_colors[col[i,j]]} {name_shapes[shp[i,j]]}")
+
+ for i in range(self.height):
+ for j in range(self.width):
+ if col[i, j] >= 0:
+ print(f"{name_colors[col[i,j]][0]}{name_shapes[shp[i,j]]}", end="")
+ elif j == 0:
+ print(" +", end="")
+ else:
+ print("-+", end="")
+ if j < self.width - 1:
+ print("--", end="")
+ else:
+ print("")
+ if i < self.height - 1:
+ for j in range(self.width - 1):
+ print(" | ", end="")
+ print(" |")
+
+ def grid_positions(self, scene):
+ col, shp = scene
+
+ properties = []
+
+ for i in range(self.height):
+ for j in range(self.width):
+ if col[i, j] >= 0:
+ n = f"{name_colors[col[i,j]]} {name_shapes[shp[i,j]]}"
+ properties += [f"a {n} at {i} {j}"]
+
+ return properties
+
+ def all_properties(self, scene):
+ col, shp = scene
+
+ properties = []
+
+ for i1 in range(self.height):
+ for j1 in range(self.width):
+ if col[i1, j1] >= 0:
+ n1 = f"{name_colors[col[i1,j1]]} {name_shapes[shp[i1,j1]]}"
+ properties += [f"there is a {n1}"]
+ if i1 < self.height // 2:
+ properties += [f"a {n1} is in the top half"]
+ if i1 >= self.height // 2:
+ properties += [f"a {n1} is in the bottom half"]
+ if j1 < self.width // 2:
+ properties += [f"a {n1} is in the left half"]
+ if j1 >= self.width // 2:
+ properties += [f"a {n1} is in the right half"]
+ for i2 in range(self.height):
+ for j2 in range(self.width):
+ if col[i2, j2] >= 0:
+ n2 = f"{name_colors[col[i2,j2]]} {name_shapes[shp[i2,j2]]}"
+ if i1 > i2:
+ properties += [f"a {n1} is below a {n2}"]
+ if i1 < i2:
+ properties += [f"a {n1} is above a {n2}"]
+ if j1 > j2:
+ properties += [f"a {n1} is right of a {n2}"]
+ if j1 < j2:
+ properties += [f"a {n1} is left of a {n2}"]
+
+ return properties
+
+ def generate_example(self):
+ while True:
+ while True:
+ scene = self.generate_scene()
+ true = self.all_properties(scene)
+ if len(true) >= self.nb_questions:
+ break
+
+ start = self.grid_positions(scene)
+
+ for a in range(10):
+ col, shp = scene
+ col, shp = col.view(-1), shp.view(-1)
+ p = torch.randperm(col.size(0))
+ col, shp = col[p], shp[p]
+ other_scene = (
+ col.view(self.height, self.width),
+ shp.view(self.height, self.width),
+ )
+ # other_scene = self.generate_scene()
+ false = list(set(self.all_properties(other_scene)) - set(true))
+ if len(false) >= self.nb_questions:
+ break
+
+ if a < 10:
+ break
+
+ true = [true[k] for k in torch.randperm(len(true))[: self.nb_questions]]
+ false = [false[k] for k in torch.randperm(len(false))[: self.nb_questions]]
+ true = [(q, "yes") for q in true]
+ false = [(q, "no") for q in false]
+
+ union = true + false
+ questions = [union[k] for k in torch.randperm(len(union))[: self.nb_questions]]
+
+ return scene, questions
+
+
+######################################################################
+
+if __name__ == "__main__":
+ grid_factory = GridFactory()
+ scene, questions = grid_factory.generate_example()
+ grid_factory.print_scene(scene)
+ print(questions)
+
+######################################################################
##############################
# rpl options
-parser.add_argument("--rpl_nb_starting_values", type=int, default=5)
+parser.add_argument("--rpl_nb_starting_values", type=int, default=3)
parser.add_argument("--rpl_max_input", type=int, default=9)
-parser.add_argument("--rpl_prog_len", type=int, default=10)
+parser.add_argument("--rpl_prog_len", type=int, default=8)
-parser.add_argument("--rpl_nb_runs", type=int, default=8)
+parser.add_argument("--rpl_nb_runs", type=int, default=5)
parser.add_argument("--rpl_no_prog", action="store_true", default=False)
"nb_test_samples": 10000,
},
"rpl": {
- "model": "352M",
+ "model": "122M",
"nb_epochs": 50,
- "batch_size": 10,
- "nb_train_samples": 2500000,
+ "batch_size": 5,
+ "nb_train_samples": 1000000,
"nb_test_samples": 10000,
},
"world": {