s = ""
variables = set()
- # We take length itself half of the time, and uniform between 1
- # and length otherwise. The actual length can be slightly greater
-
- length = min(length, 1 + torch.randint(length * 2, (1,)).item())
while len(s) < length:
v = random_var(nb_variables=nb_variables)
s += v + "=" + random_expr(variables, budget=20) + ";"
assert nb_variables <= 26
sequences = []
result_max = 99
+
for n in range(nb):
+ # We take length itself half of the time, and uniform between
+ # 1 and length otherwise. The actual length can be slightly
+ # greater
+
+ l = min(length, 1 + torch.randint(length * 2, (1,)).item())
result = None
while result == None or max(result.values()) > result_max:
- l = length
p, v = generate_program(nb_variables, l)
v = ", ".join(['"' + v + '": ' + v for v in v])
ldict = {}
for batch in tqdm.tqdm(
input.split(self.batch_size), dynamic_ncols=True, desc=desc
):
- if split == "train":
- last = (batch != self.filler).max(0).values.nonzero().max() + 3
- batch = batch[:, :last]
+ last = (batch != self.filler).max(0).values.nonzero().max() + 3
+ batch = batch[:, :last]
yield batch
def vocabulary_size(self):
def compute_nb_correct(input):
result = input.clone()
- ar_mask = (result == self.space).long().cumsum(dim=1).clamp(max=1)
+ s = (result == self.space).long()
+ ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
result = (1 - ar_mask) * result + ar_mask * self.filler
masked_inplace_autoregression(
model,
colors = [
(1.00, 0.00, 0.00),
(0.00, 1.00, 0.00),
- (0.00, 0.00, 1.00),
+ (0.60, 0.60, 1.00),
(1.00, 1.00, 0.00),
(0.75, 0.75, 0.75),
]
]
while True:
-
- frames =[]
+ frames = []
scene = random_scene()
xh, yh = tuple(x.item() for x in torch.rand(2))
return frames, actions
+######################################################################
+
+
+# ||x_i - c_j||^2 = ||x_i||^2 + ||c_j||^2 - 2<x_i, c_j>
+def sq2matrix(x, c):
+ nx = x.pow(2).sum(1)
+ nc = c.pow(2).sum(1)
+ return nx[:, None] + nc[None, :] - 2 * x @ c.t()
+
+
+def update_centroids(x, c, nb_min=1):
+ _, b = sq2matrix(x, c).min(1)
+ b.squeeze_()
+ nb_resets = 0
+
+ for k in range(0, c.size(0)):
+ i = b.eq(k).nonzero(as_tuple=False).squeeze()
+ if i.numel() >= nb_min:
+ c[k] = x.index_select(0, i).mean(0)
+ else:
+ n = torch.randint(x.size(0), (1,))
+ nb_resets += 1
+ c[k] = x[n]
+
+ return c, b, nb_resets
+
+
+def kmeans(x, nb_centroids, nb_min=1):
+ if x.size(0) < nb_centroids * nb_min:
+ print("Not enough points!")
+ exit(1)
+
+ c = x[torch.randperm(x.size(0))[:nb_centroids]]
+ t = torch.full((x.size(0),), -1)
+ n = 0
+
+ while True:
+ c, u, nb_resets = update_centroids(x, c, nb_min)
+ n = n + 1
+ nb_changes = (u - t).sign().abs().sum() + nb_resets
+ t = u
+ if nb_changes == 0:
+ break
+
+ return c, t
+
+
+######################################################################
+
+
+def patchify(x, factor, invert_size=None):
+ if invert_size is None:
+ return (
+ x.reshape(
+ x.size(0), #0
+ x.size(1), #1
+ factor, #2
+ x.size(2) // factor,#3
+ factor,#4
+ x.size(3) // factor,#5
+ )
+ .permute(0, 2, 4, 1, 3, 5)
+ .reshape(-1, x.size(1), x.size(2) // factor, x.size(3) // factor)
+ )
+ else:
+ return (
+ x.reshape(
+ invert_size[0], #0
+ factor, #1
+ factor, #2
+ invert_size[1], #3
+ invert_size[2] // factor, #4
+ invert_size[3] // factor, #5
+ )
+ .permute(0, 3, 1, 4, 2, 5)
+ .reshape(invert_size)
+ )
+
+
if __name__ == "__main__":
- frames, actions = sequence(nb_steps=31,all_frames=True)
- frames = torch.cat(frames,0)
- print(f"{frames.size()=}")
- torchvision.utils.save_image(frames, "seq.png", nrow=8)
+ import time
+
+ all_frames = []
+ nb = 1000
+ start_time = time.perf_counter()
+ for n in range(nb):
+ frames, actions = sequence(nb_steps=31)
+ all_frames += frames
+ end_time = time.perf_counter()
+ print(f"{nb / (end_time - start_time):.02f} samples per second")
+
+ input = torch.cat(all_frames, 0)
+ x = patchify(input, 8)
+ y = x.reshape(x.size(0), -1)
+ print(f"{x.size()=} {y.size()=}")
+ centroids, t = kmeans(y, 4096)
+ results = centroids[t]
+ results = results.reshape(x.size())
+ results = patchify(results, 8, input.size())
+
+ print(f"{input.size()=} {results.size()=}")
+
+ torchvision.utils.save_image(input[:64], "orig.png", nrow=8)
+ torchvision.utils.save_image(results[:64], "qtiz.png", nrow=8)
+
+ # frames, actions = sequence(nb_steps=31, all_frames=True)
+ # frames = torch.cat(frames, 0)
+ # torchvision.utils.save_image(frames, "seq.png", nrow=8)