######################################################################
 
-args = parser.parse_args()
+# args = parser.parse_args()
 
-assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
+args, sup_args = parser.parse_known_args()
+
+sup_args = dict([x.removeprefix("--").split("=") for x in sup_args])
 
 if args.result_dir is None:
     args.result_dir = f"results_{args.task}_{args.model}"
         print(f"result directory {args.result_dir} already exists")
         exit(1)
 
+loss_file = open(os.path.join(args.result_dir, "loss.dat"), "a")
+
 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
 
 if args.seed >= 0:
         log_string(f"sha256sum {l.strip()}")
 
 now = time.strftime("%Y%m%d-%H%M%S", time.localtime())
-os.system(f"tar zcvf {args.result_dir}/src-{now}.tgz *.py *.sh")
+os.system(f"tar --ignore-failed-read zcvf {args.result_dir}/src-{now}.tgz *.py *.sh")
 
 log_string(f"argv {' '.join(sys.argv)}")
 
 for n in vars(args):
     log_string(f"args.{n} {getattr(args, n)}")
 
+for n in vars(sup_args):
+    log_string(f"sup_args.{n} {getattr(sup_args, n)}")
+
 
 ######################################################################
 
 ######################################################################
 
 
+assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
+
+
 def picoclvr_pruner_horizontal_green(p):
     return not ("green" in p and ("left" in p or "right" in p))
 
     causal=True,
     dropout=args.dropout,
     attention_layer=args.attention,
+    logger=log_string,
+    **sup_args,
 )
 
 model.to(device)
 
 it = 0
 
+n_batch = 0
+
 for n_epoch in range(nb_epochs_finished, nb_epochs):
     if args.optim == "sgd":
         optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate)
         total_loss.backward()
         optimizer.step()
 
+        grad_norm = sum([p.grad.pow(2).sum() for p in model.parameters()]).sqrt()
+
+        loss_file.write(f"{n_epoch} {n_batch} {loss.item()} {grad_norm.item()}\n")
+
+        n_batch += 1
+
     with torch.autograd.no_grad():
         model.eval()
 
 
         nb_lines,
         attention_dropout=0.0,
         len_max=1e5,
+        logger=print,
+        **kwargs,
     ):
         super().__init__()
 
         nb_lines,
         attention_dropout=0.0,
         len_max=1e5,
+        logger=print,
+        **kwargs,
     ):
         super().__init__()
 
         caterpillar_height,
         attention_dropout=0.0,
         len_max=1e5,
+        logger=print,
+        **kwargs,
     ):
         super().__init__()
 
 
         self.proba_gate_dropout = 0.0
 
+        default_b_G = kwargs.get("default_b_G")
+        if default_b_G is None:
+            default_b_G = -math.log(caterpillar_height - 1)
+
+        logger(f"default_b_G {default_b_G}")
+
         self.w_G = randw(nb_heads, caterpillar_height, dim_model)
-        self.b_G = nn.Parameter(
-            torch.full(
-                (nb_heads, caterpillar_height), -math.log(caterpillar_height - 1)
-            )
-        )
+        self.b_G = nn.Parameter(torch.full((nb_heads, caterpillar_height), default_b_G))
 
         self.w_K = randw(nb_heads, dim_qk, dim_model)
         self.w_V = randw(nb_heads, dim_v, dim_model)
             torch.einsum("ntc,hrc->nhrt", X, self.w_G) + self.b_G[None, :, :, None]
         ).sigmoid()
 
+        # Clip the gating to avoid values greater than 1 when several
+        # heads hit the same row
+
+        G = G / G.sum(1, keepdim=True).clamp(min=1)
+
         ######################################################################
         # Roll the gating indexes
 
-        warnings.warn("rotating barrel", RuntimeWarning)
+        # warnings.warn("rotating barrel", RuntimeWarning)
 
-        r_barrel = torch.arange(R, device=G.device)[None, None, :, None]
-        t_barrel = torch.arange(t1 - t0, device=G.device)[None, None, None, :]
-        r_barrel = (r_barrel + (t_barrel + t0) // L) % R
-        G = G.gather(dim=2, index=r_barrel.expand_as(G))
+        # r_barrel = torch.arange(R, device=G.device)[None, None, :, None]
+        # t_barrel = torch.arange(t1 - t0, device=G.device)[None, None, None, :]
+        # r_barrel = (r_barrel + (t_barrel + t0) // L) % R
+        # G = G.gather(dim=2, index=r_barrel.expand_as(G))
 
         ######################################################################
         # The "flashbacks"
 
         # We prepare the arguments for the parallel scan
 
-        # Clip the gating to avoid values greater than 1 when several
-        # heads hit the same row
-
-        G = G / G.sum(1, keepdim=True).clamp(min=1)
-
         A = 1 - G.sum(1)
 
         # warnings.warn("harmonic recurrence", RuntimeWarning)
         nb_heads=1,
         causal=False,
         attention_dropout=0.0,
+        logger=print,
+        **kwargs,
     ):
         super().__init__()
 
         dropout=0.0,
         len_max=1e5,
         attention_layer="kvrec",
+        logger=print,
+        **kwargs,
     ):
         super().__init__()
 
                     nb_heads=nb_heads,
                     causal=causal,
                     attention_dropout=dropout,
+                    logger=logger,
+                    **kwargs,
                 )
             elif attention_layer == "dumbrec":
                 return DumbRec(
                     nb_heads=nb_heads,
                     nb_lines=nb_lines,
                     attention_dropout=dropout,
+                    logger=logger,
+                    **kwargs,
                 )
             elif attention_layer == "kvrec":
                 return KVRec(
                     nb_heads=nb_heads,
                     nb_lines=nb_lines,
                     attention_dropout=dropout,
+                    logger=logger,
+                    **kwargs,
                 )
             elif attention_layer == "caterpillar":
                 return Caterpillar(
                     caterpillar_length=self.caterpillar_length,
                     caterpillar_height=self.caterpillar_height,
                     attention_dropout=dropout,
+                    logger=logger,
+                    **kwargs,
                 )
             else:
                 raise ValueError(f"Unknown attention type {attention_layer}.")