######################################################################
 
 
-def nb_rank_error(output, targets):
-    output = output.reshape(-1, output.size(-1))
-    targets = targets.reshape(-1, targets.size(-1))
-    i = outputs.argmax(1)
-    # out=input.gather out[i][j]=input[i][index[i][j]]
-    # u[k]=targets[k][i[k]]
-    return output[targets.argmax(1)]
-
-
 def one_shot(gpt, task):
     t = gpt.training
     gpt.eval()
         for input, targets in task.policy_batches(split="train"):
             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
             output = model(output_gpt)
-            loss = -(output.log_softmax(-1) * targets).sum(-1).mean()
+            loss = (
+                -(output.log_softmax(-1) * targets).sum(-1).mean()
+                + targets.xlogy(targets).sum(-1).mean()
+            )
             acc_train_loss += loss.item() * input.size(0)
             nb_train_samples += input.size(0)
 
         for input, targets in task.policy_batches(split="test"):
             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
             output = model(output_gpt)
-            loss = -(output.log_softmax(-1) * targets).sum(-1).mean()
+            loss = (
+                -(output.log_softmax(-1) * targets).sum(-1).mean()
+                + targets.xlogy(targets).sum(-1).mean()
+            )
             acc_test_loss += loss.item() * input.size(0)
             nb_test_samples += input.size(0)
 
-        print(
-            f"{n_epoch=} {acc_train_loss/nb_train_samples=} {acc_test_loss/nb_test_samples=}"
+        log_string(
+            f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
         )
 
     gpt.train(t)