name = 'deepnet3'
def __init__(self):
- super(DeepNet2, self).__init__()
+ super(DeepNet3, self).__init__()
self.conv1 = nn.Conv2d( 1, 32, kernel_size=7, stride=4, padding=3)
- self.conv2 = nn.Conv2d( 32, 256, kernel_size=5, padding=2)
- self.conv3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
- self.conv4 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
- self.conv5 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
- self.conv6 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
- self.conv7 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
- self.fc1 = nn.Linear(4096, 512)
- self.fc2 = nn.Linear(512, 512)
- self.fc3 = nn.Linear(512, 2)
+ self.conv2 = nn.Conv2d( 32, 128, kernel_size=5, padding=2)
+ self.conv3 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
+ self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
+ self.conv5 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
+ self.conv6 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
+ self.conv7 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
+ self.fc1 = nn.Linear(2048, 256)
+ self.fc2 = nn.Linear(256, 256)
+ self.fc3 = nn.Linear(256, 2)
def forward(self, x):
x = self.conv1(x)
x = self.conv7(x)
x = fn.relu(x)
- x = x.view(-1, 4096)
+ x = x.view(-1, 2048)
x = self.fc1(x)
x = fn.relu(x)