for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
         i = (ar_mask.sum(0) > 0).nonzero()
         if i.min() > 0:
-            model(
-                mygpt.BracketedSequence(input, 0, i.min())
-            )  # Needed to initialize the model's cache
+            # Needed to initialize the model's cache
+            model(mygpt.BracketedSequence(input, 0, i.min()))
         for s in range(i.min(), i.max() + 1):
             output = model(mygpt.BracketedSequence(input, s, 1)).x
             logits = output[:, s]
         for input in task.batches(split="test"):
             input = input.to(device)
 
-            # input, loss_masks, true_images = task.excise_last_image(input)
-            # input, loss_masks = task.add_true_image(input, true_images, loss_masks)
-
             output = model(mygpt.BracketedSequence(input)).x
             loss = F.cross_entropy(output.transpose(1, 2), input)
             acc_test_loss += loss.item() * input.size(0)