)
             f.write(episodes2str(lr, s, a, r, unicode=True, ansi_colors=True))
             f.write("EOF\n")
-            f.write("sleep 0.5\n")
+            f.write("sleep 0.25\n")
+        print(f"Saved {filename}")
 
 
 if __name__ == "__main__":
 
         self.index_reward = self.state_len + 2
         self.it_len = self.state_len + 3  # lookahead_reward / state / action / reward
 
+    def wipe_lookahead_rewards(self, batch):
+        t = torch.arange(batch.size(1), device=batch.device)[None, :]
+        u = torch.randint(batch.size(1), (batch.size(0), 1), device=batch.device)
+        lr_mask = (t <= u).long() * (
+            t % self.it_len == self.index_lookahead_reward
+        ).long()
+
+        return lr_mask * greed.lookahead_reward2code(2) + (1 - lr_mask) * batch
+
     def batches(self, split="train", nb_to_use=-1, desc=None):
         assert split in {"train", "test"}
         input = self.train_input if split == "train" else self.test_input
         for batch in tqdm.tqdm(
             input.split(self.batch_size), dynamic_ncols=True, desc=desc
         ):
-            t = torch.arange(batch.size(1), device=batch.device)[None, :]
-            u = torch.randint(batch.size(1), (batch.size(0), 1), device=batch.device)
-            lr_mask = (t <= u).long() * (
-                t % self.it_len == self.index_lookahead_reward
-            ).long()
-
-            batch = lr_mask * greed.lookahead_reward2code(2) + (1 - lr_mask) * batch
-            yield batch
+            yield self.wipe_lookahead_rewards(batch)
 
     def vocabulary_size(self):
         return greed.nb_codes
     def produce_results(
         self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
     ):
-        result = self.test_input[:250].clone()
+        result = self.wipe_lookahead_rewards(self.test_input[:250].clone())
 
         # Saving the ground truth